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SUMMARY

Sparse matrix computations are ubiquitous in high-performance computing applications and often are
their most computationally intensive part. In particular, efficient solution of large-scale linear systems
may drastically improve the overall application performance. Thus, the choice and implementation of the
linear system solver are of paramount importance. It is difficult, however, to navigate through a multitude
of available solver packages and to tune their performance to the problem at hand, mainly because of the
plethora of interfaces, each requiring application adaptations to match the specifics of solver packages.
For example, different ways of setting parameters and a variety of sparse matrix formats hinder smooth
interactions of sparse matrix computations with user applications. In this paper, interfaces designed for
components that encapsulate sparse matrix computations are discussed in the light of their matching with
application usability requirements. Consequently, we distinguish three levels of interfaces, high, medium,
and low, corresponding to the degree of user involvement in the linear system solution process and in
sparse matrix manipulations. We demonstrate when each interface design choice is applicable and how
it may be used to further users’ scientific goals. Component computational overheads caused by various
design choices are also examined, ranging from low level, for matrix manipulation components, to high
level, in which a single component contains the entire linear system solver. Published in 2007 by John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Sparse linear system solution is an integral part of many engineering and scientific applications.
It also tends to be the most computationally intensive part, so gaining efficiency in solving linear
systems makes a considerable improvement in the entire application performance. Many efficient
algorithms have been proposed to solve sparse linear systems (see e.g. [1] for a list of freely avail-
able implementations). As a rule, the solver choice depends heavily on linear system properties,
such as symmetry, spectral characteristics, number of non-zero entries, or sparsity pattern. Even
the matrix storage format affects the selection. The size of the solver search space makes it infea-
sible to try all the available solution options, each of which may have its own calling sequence
and format for input and output data. Thus, there is a need for common (standard) interfaces to
different solver packages to facilitate their easy utilization in modern high-performance computing
(HPC) applications. Different linear system solvers may be even chosen dynamically, depending
on runtime conditions, if application and solvers are componentized, i.e. encapsulated into compo-
nents using some standard interfaces and provided with a means to interconnect according to the
rules of a component model [2]. A virtue of a component model is to combine components into a
coherent application in a ‘loosely coupled’ manner, i.e. only via exposed (public) interfaces without
modifications to the component internals.
The common component architecture (CCA) [3] is the component model that specifically targets

high-performance scientific applications. The CCA specification consists of a set of abstract
interfaces written in the scientific interface definition language (SIDL) [4]. Featuring applica-
tion independence, SIDL enables the design of common interfaces across multiple libraries and
multiple parties. SIDL is designed to address the needs of parallel scientific computing, specifically
complex numbers, dynamic multi-dimensional arrays, and parallel communication directives.
Babel [5], developed at the Lawrence Livermore National Laboratory, is a set of tools to interface
scientific software packages for which SIDL interfaces are defined. CCA enables the assembly
of HPC applications from software building blocks (components) using common SIDL interfaces
and ensures their interoperability via a component framework, a software tool that supports CCA
specifications. In particular, the Ccaffeine framework [6] has been developed under the SciDAC
project [7] funded by the U.S. Department of Energy.
Standardizing interfaces for sparse linear systems is a formidable task, much unlike the interfaces

for the dense linear algebra routines. A major obstacle lies in the multitude of sparse matrix formats
and solution methods that are based on these formats and on the sparsity structure of the system
matrices. For example, matrices with a very irregular sparsity pattern may be easily solved by a
sparse version of Gaussian elimination, using software packages such as MUMPS [8] or SuperLU
[9]. On the other hand, large-scale matrices arising from certain three-dimensional partial differential
equations (PDEs) may be intractable for the direct-factorization (exact) methods, whereas some
techniques approximating the solution with a given accuracy show good performance. In realistic
scientific applications, the use of approximate (called iterative) techniques is justified since the
solution is desired typically with a certain accuracy, which may range from a few digits in mantissa
to machine precision depending on the nature of application. The more the accuracy that is desired,
the more the iterations that may be performed before convergence with a predefined tolerance. For
direct methods, the amount of memory needed to factorize the matrix may be a major bottleneck.
Once the factorization is completed, only one triangular solve is required to obtain the solution (with
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a possible refinement to follow). For iterative methods, depending on the linear system properties,
a transformation (called preconditioning) may be required in the pre-solution phase to make the
system easier to solve. It is desirable to construct a preconditioner such that it is inexpensive, in
terms of both the memory used and the overall solution time. Thus, preconditioning may balance
the convergence rate with the cost to perform a single iteration.
Sparse linear system solver packages, such as PETSc [10], Trilinos [11], and hypre [12], contain

a wide array of methods, from which the user may choose depending on the system matrix proper-
ties and the HPC application at hand. Recently, we have designed a single LInear Solver Interface
[13] using CCA, which spans a broad range of solver packages and facilitates their access in
both sequential and parallel environments. Since the CCA model is currently parallelism trans-
parent (e.g. instances of the Ccaffeine framework are multiplexed in each processor and do not
provide parallel communication intrinsically [6]), the interprocess communications are handled
within each solver package and are not exposed via component interfaces. LISI assumes distributed
data storage, such that each processing element owns a part of the matrix distributed in a block-
row manner. Although this assumption is typical for existing solver packages, it is desirable to
have a means of addressing the distributed matrix layout in the interface. In the future, LISI may
be able to leverage the ongoing distributed array descriptor (DAD) [7] effort within CCA, when
DAD extends its specifications from dense to sparse matrices. In our recent work [14], the legacy
SPARSKIT package [15], developed in the 1990s by Yousef Saad at the University of Minnesota,
has been redesigned into a set of CCA components. The new design enables easy interfacing
of SPARSKIT with application codes and its extensibility with novel iterative solution methods
(called accelerators) and preconditioning techniques. In particular, a component encapsulating the
state-of-the-art preconditioner algebraic recursive multilevel solver (ARMS) [16] has been added to
SPARSKIT.
The design and selection of Sparse Linear Algebra (SpLA) interfaces has to be driven by user

requirements. For instance, coupling a linear solver in a simulation involving sophisticated multi-
code interactions, such as in multi-scale problems, may require a ‘high-level’ view of the solver
and hide the details of all its building blocks into a single component as black box [13]. When
optimizing the linear system solution, however, one may want to focus on its separate stages.
Thus, a finer grain (or gray box) view-point is desired, which distinguishes such solution func-
tionalities as preconditioner construction and the iterative approximation method. At the most
detailed level of control, such low-level operations as matrix–vector or matrix–matrix multiplica-
tion may be represented as components. This could be beneficial for handling very large matrices
when conversions to adhere to the solver’s internal sparse matrix format become expensive or
when the application code needs access to efficient (tuned) implementations of sparse matrix
computational kernels for a given hardware architecture. In this paper, we first explore how these
three user requirement levels may be reflected in a choice of interface. Then we provide inter-
face examples for each level and consider usability and computational overheads of the respective
interfaces.
This paper is organized as follows. In Section 2, we outline three design choices that we have

considered when creating SpLA components. Section 3 describes how each interface level may
be used. In Section 4, we examine the computational overheads incurred and provide examples of
usability testing for different component interfaces. Section 5 presents a discussion of related work,
while Section 6 concludes.
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2. DESIGN CHOICES

To facilitate the interaction of SpLA software with a scientific application, component interfaces
that are sufficiently general to encompass a large variety of SpLA codes and their usages may be
developed. This entails a high-level approach (call it HI) that hides the details of SpLA algorithm
implementations and handles enough information to distinguish the solution method groups, each of
which may have its own parameter types and preprocessing stages. Given a particular SpLA solu-
tion method group (e.g. direct or iterative) or particular SpLA package, a user may want to tune
its parts to a particular problem at hand. This may be achieved using a medium-level approach
(call it MI) to interface design. The MI approach enables swapping and runtime tuning of major
building blocks for a given solution method. However, the general features of MI interfaces may be
determined and re-used for a class ofMI components, such as preconditioners or accelerators. Finally,
the basic (kernel) operations of SpLA, such as matrix–matrix and matrix–vector multiplication, may
need to have component interfaces (call them low-level interfaces or LI). SpLA packages or user code
optimizationsmay relyonLIcomponents togain transparency inhandlingmanyexisting sparsematrix
formats and underlying algorithms. The three design choicesmay be further characterized as follows.

2.1. LI level

The low-level design choice refers to operating on objects, such as matrices, directly. Many modern
numerical software packages that embrace the object-oriented approach already implement this
design choice in the conventional library format (see, e.g. [17]). Thus, it is interesting to consider the
LI level implemented as components to serve in the componentized applications and to investigate
its amount of overhead. In particular, we have encapsulated as the low-level component, called
BLASSM,matrix–matrix andmatrix–vector operations from SPARSKIT. BLASSM stands for Basic
Linear Algebra Subroutines with Sparse Matrices. Its component form is a part of the SPARSKIT
suite of components (SPARSKIT-CCA) and extends the SPARSKIT functionality by not requiring
the user to know which variation of a function to call for a particular matrix format, and thus enables
the application to freely choose its sparsematrix format. Similar to the conventional library approach,
this feature is accomplished through the overloading of functions in object-oriented languages, such
as C++ and Java, and in some non-object-oriented languages, such as FORTRAN90. Function
overloading allows specifying more than one function of the same name in the same scope. As
implemented in the BLASSM component, for example, it allows the user to call a generic function
amub to multiply matrix A by matrix B, and the function itself will then determine which form
of amub needs to be called: When the matrices input to amub are in the compressed sparse row
(CSR) storage format, the implementation of amub for the CSR format is used. Such a design
allows more flexibility in terms of type-agnostic code. However, it also may have the disadvantage
of incurring overhead from function overloading in a programming language (C++ in the case of
the BLASSM implementation).

2.2. MI level

A medium-level design choice represents a higher level of abstraction than the LI level. Specifi-
cally, the major steps of an iterative solution process are encapsulated as components. They may
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include separately iterative accelerators, preconditioners, and matrix generation routines, whereas
matrix–vector multiplication may not need to be a separate component. For a medium-level design,
there is no function overloading, but rather a component implementation for each possible choice
of the functionality parameterized by a specific matrix format. This can be more easily seen when
considering two different preconditioners. In a low-level design, the preconditioner component
would depend on some information to determine which overloaded preconditioner method to call.
In a medium-level design, however, a particular preconditioner component interface implements
only one preconditioner and that will be the one that is called. In SPARSKIT-CCA, the three solver
functionalities—accelerator, preconditioner, and matrix generation—are made into components.
The component interface for each functionality is designed such that it has a standard argument
list to facilitate component reuse and make easier the interchanging of different component imple-
mentations. Two types of preconditioner components, Base and Generic, have been designed in
SPARSKIT-CCA. Generic reflects complex data structures and is geared for multi-level formu-
lations used in novel preconditioning techniques, while the Base type leverages the FORTRAN77-
style argument lists, which are widely used in existing application codes. Base preconditioner
interface facilitates easy conversion from procedural to component-style programming and is bene-
ficial for existing large-scale simulations relying on the old SPARSKIT functionality. On the other
hand, the Generic preconditioner interface makes it easier to add more preconditioner component
implementations in the future, expanding the preconditioner suite with those existing in other SpLA
solver packages. Here, an excerpt from the SPARSKIT-CCA preconditioner interface (Figure 1)
is provided along with the interface for accelerator application (Figure 2). For a detailed interface
specification, the reader is referred to [14].

Figure 1. Component interface for Generic preconditioner.

Figure 2. Component interface for application of accelerator.
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2.3. HI level

The high-level design choice provides a more abstract level compared with the other two interface
levels. It describes the interaction between scientific applications and SpLA solvers. In particular,
a SpLA solver is treated as a black box by the scientific application. By using HI, application
developers and users do not have to worry about the details of the SpLA solver but simply invoke HI
by passing a few required solver parameters. The parameter passing method is generic and allows
for a wide variety of data types and values. In particular, both accelerator and preconditioner are
encapsulated into one solver component, which is a fundamental HI unit for SpLA packages.
Thus, the choice of accelerator and preconditioner may be declared in the parameter list passed
to the solver component. HI aims to facilitate simple and easy access to a multitude of SpLA
solver packages, such as Trilinos and PETSc. For example, Figure 3 presents a part of the HI
solver component interface (SparseSolver interface) describing the invocation of the linear system
solution method (solve). The matrix setup method is overloaded with different sets of pass-in
parameters, so that different sparse matrix formats and Fortran-style indexing can be properly
handled. Although a generic matrix object could be used to hide the linear system data and provide
good data encapsulation, it introduces another level of complexity for the interface users that forces
them to construct a matrix object first and only then use the solver. This is unnecessary if there is
no other application functionality involving the constructed matrix object. We have also observed
that, in many HPC applications, a sparse linear system is represented as three arrays; hence we
have opted for this common case as a trade-off between a less general but potentially more light-
weight and the ‘all-encompassing’ matrix interface designs. In our HI interface, setXXX methods
provide the generic way to set up the internal solver parameters, and key is the parameter name.
The agreement on the key’s name should be associated with the HI, and currently the list of keys
contains such items as solver, preconditioner, tolerances, and the maximum number of iterations.
The solve invokes a solution method from a desired SpLA package and returns the solution

Figure 3. High-level component interface for the linear system solver invocation (solve method).
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vector. Built on top of the contemporary SpLA packages, such as Trilinos and PETSc, HI abstracts
the minimal common set of interfaces. Thus, HI allows for easy package switching and seamless
interacting of SpLA packages and application during the runtime, which is difficult to achieve if
the interfaces of any particular package are adopted at the HI level. For a detailed description and
the design rationale of HI interfaces, see [13].

3. USING THE THREE INTERFACE LEVELS

Since SpLA solver components are often the major computationally intensive part of an HPC
application, their usability is of primary importance, along with their ability to solve a given problem.
Usability affects the amount of execution overhead and programming effort that appear in coupling
the solver with the application code. The SpLA interface should match application needs in terms
of the degree to which the application wishes to control sparse matrix computations. Based on this
requirement, three levels of application involvement may be identified.
The high-level model provides a single abstract solver component interface with a set of methods

that the user may call on the solver component. In particular, the user needs to construct one solver
object, and call the set methods associated with this object to pass the necessary information from
the application to solvers.

solver.setupMatrix(<Matrix arguments>)
solver.setupRHS(<RHS arguments>)
solver.set("solver", "GMRES")
solver.set("preconditioner", "ilu")
solver.solve(<Solution arguments>)

To gain flexibility in the solver configuration, methods such as

solver.setInt("fillevel", <number>)
solver.setInt("maxit", <number>)
solver.setDouble("tol", <number>)

can be used to set typical solver parameters. For iterative methods, these parameters may include,
among others, fillevel, maxit, and tol to specify, respectively, the preconditioner non-zero
density, the maximum number of iterations, and stopping tolerance allowed for the accelerator.
In the medium-level model, the user needs to explicitly connect the components responsible

for different solution stages. To recreate the example from the high-level model for the GMRES
accelerator and the incomplete LU (ILU) preconditioner [18], which are both from the SPARSKIT
suite of components, the user needs to connect individual accelerator and preconditioner components
to his application.

accelerator.apply(<Matrix and RHS arguments>)
preconditioner.create(<ilu arguments>)

The difference in usage between the medium-level and high-level interfaces is that application
scientists need to know the individual parts/components of a linear solver and explicitly connect
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them. They must also know the argument lists and matrix formats used by those components.
Consequently, component developers are asked to create separate components for a given sparse
matrix format, stage of the linear system solution, type of preconditioner, and specific input/output
argument lists. For example, preconditioner components may have an interface consisting of a,
ja, ia, lfil, droptol, alu, jlu, ju, and nnz, which comprise a typical set of input/output
parameters for an ILU-type preconditioner: the triple (a, ja, ia) represents the sparse matrix (in the
CSR format), lfil represents the maximum fill-in for each row of lower (L) and upper (U) trian-
gular matrices, droptol is the tolerance for dropping small factors, and the triple (alu,jlu,ju)
represents the output matrix of the ILU factorization stored in the modified sparse row format (see,
e.g. [18]).
The low-level model is rather easy to use for the application scientist since details of the sparse

matrix formats and corresponding specific implementations are hidden. The application scien-
tist chooses the data format and passes the arguments to the required generic operation/method.
The method essentially acts as a wrapper and is expected to determine by the type of the argu-
ments which concrete version of the operation to substitute for the generic one. For example, to
multiply two sparse matrices in the CSR format, the following sequence of operations may be
issued:

matrix1->type = "CSR"
matrix2->type = "CSR"
blassm.amub(matrix1,matrix2)

The amub function is expected to call the version of the matrix–matrix multiplication that multi-
plies two matrices in the CSR format. In an HPC application, LI components may be used in a
stand-alone fashion, i.e. without SpLA solver components. The advantage of using LI components
becomes apparent for very large matrices when format conversions or data copying is prohibitively
expensive.

4. TESTING AND EVALUATION

SpLA solver CCA components with high-, medium-, and low-level interfaces have been tested in
typical real-world application scenarios. Consider first the solution of a three-dimensional PDE,
which arises in modeling of many physical phenomena:

−�2u
�x2

− �2u
�y2

− �2u
�z2

= f (1)

with Dirichlet boundary conditions, discretized with a seven-point centered finite-difference scheme
on an nx × ny × nz grid. The tests of MI and LI components have been performed at the Ames
Laboratory on an Intel XEON 2.2GHz processor with 768MB RAM running Debian Sarge (3.1)
and compiled with the Debian-shipped GCC 3.3.5. For the HI components, the tests were conducted
at the Indiana University on an AMD Opteron 1.9GHz processor with 4GB RAM running Red Hat
3.4.5-2 and all the packages and software were compiled with GCC 3.4.6. The CCA Tools version
0.6.0 rc5 was used as the component framework for our tests.
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4.1. HI component

High-level interfaces are implemented in C++ for Trilinos [11] and PETSc [10], which provide
widely used sparse linear solvers. Tests were conducted to compare the overheads introduced by
component implementation during the linear system solution process. Table I shows a compar-
ison of a non-component version of PETSc (column PETSc) and its component implementation
(column PETSc-CCA), while Table II shows a comparison for the corresponding implementa-
tions of Trilinos (columns Trilinos and Trilinos-CCA, respectively). In both tables, column
its shows the number of iterations taken to convergence, column nnz refers to the number of
non-zero elements in the matrix obtained for nx = ny = 40, 50, . . . , 100 and nz = 10, and column
diff shows the component overhead as the percentage of the non-component execution time. The
execution times are averages of 10 runs for each problem size, and the system is solved using the
Jacobi preconditioner and BICGSTAB accelerator (see, e.g. [18]), with a stopping tolerance of 10−6

and other default input parameters as provided by PETSc and Trilinos, respectively. The testing
involves three components: driver, PETSc, and Trilinos, which are wired as shown in Figure 4
(left). Either of the latter two may be easily connected to the driver at run-time. The solid and
dotted lines show that the connection can be made for either one or another. In fact, this is how the
results in Tables I and II were obtained for PETSc-CCA and Trilinos-CCA, respectively: No
source code modification, re-compilation, or re-linking was used. Only single-processor executions
of PETSc and Trilinos were performed to compare with the MI components of SPARSKIT-CCA,
which is a sequential package. For the parallel experiments, see [13]. Test results show only a tiny
component overhead due to a call to the light-weight C++ wrapper functions for the underlying

Table I. Timing comparisons (in seconds) of high-level PETSc component.

nnz its PETSc PETSc-CCA diff (%)

76 760 37 0.154 0.154 0
122 880 44 0.287 0.289 0.43
179 800 41 0.399 0.400 0.32
247 520 42 0.565 0.568 0.55
326 040 45 0.865 0.870 0.61
415 360 43 1.020 1.038 1.72
515 480 44 1.284 1.296 0.91

Table II. Timing comparisons (in seconds) of high-level Trilinos component.

nnz its Trilinos Trilinos-CCA diff (%)

76 760 40 0.179 0.180 0.41
122 880 38 0.289 0.289 0
179 800 44 0.474 0.481 1.44
247 520 44 0.652 0.658 1.03
326 040 44 0.922 0.929 0.73
415 360 44 1.175 1.176 0.07
515 480 42 1.382 1.394 0.84

Published in 2007 by John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2007)
DOI: 10.1002/cpe



M. SOSONKINA, F. LIU AND R. BRAMLEY

LISI Driver

Trilinos

PETSc

Reorder

Reduce/More levels ?
Yes

No

ARMS Component

ILUC

ILUT

Last level of ARMS

Figure 4. Switching of HI components (left) and MI components within the ARMS preconditioner framework
(right). The Uses and Provides interfaces are depicted as light- and dark-shaded squares, respectively. The
flowchart within the ARMS component indicates its multi-level structure that may be implemented recursively.

Table III. Timing comparisons (in seconds) of medium-level SPARSKIT components.

nnz its SKIT SKIT-CCA diff (%)

76 760 36 0.0792 0.08 1
122 880 36 0.14 0.14 0
179 800 36 0.208 0.215 3.36
247 520 36 0.334 0.345 3.29
326 040 36 0.443 0.448 1.13
415 360 36 0.570 0.588 3.12
515 480 36 0.7185 0.730 1.6

package functionality. A more substantial overhead, originating from the CCA framework initial-
izations, also exists, but it may vary depending on the number of components instantiated in each
application. This overhead should be constant for a typical HPC application in which the number of
components is fixed. We have also observed that the overhead percentage decreases with increase
in matrix size. The tables do not present the framework instantiation overhead since it is incurred
only once and may be amortized over the course of large-scale simulations.

4.2. MI components

Table III shows a comparison of the original SPARSKIT (column SKIT) and its component imple-
mentations (column SKIT-CCA) for the medium-level component design. The other columns in
Table III represent the same type of data as in Table I. The total execution times (in seconds) are
for an average of 10 runs on each problem, with standard deviations ranging from 2.89× 10−4

to 5.71× 10−3. We have solved the linear systems with ILUT as the preconditioner and flex-
ible GMRES [18] as the accelerator. The test was performed as a sequence of connections to the
different components, an accelerator and a preconditioner, in each iteration of the solution process.
These results show only a small overhead incurred by using the component implementations. The
percentage of the incurred overhead appears to be relatively small and stable unlike the overhead
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increase observed in the BLASSM component, which may also depend on the number of matrix
operations performed.
We have used the tuning and analysis utilities (TAU) [19] performance component to do perfor-

mance analysis on medium-level components. The TAU performance components are currently the
best way to do timing analysis on CCA components. In the case of SPARSKIT-CCA, they give the
user an ability to measure how much time is spent in each component during the iterative solution
process. The results can be seen in Table IV, in which column Func states the function name
that was called. The column Norm shows the difference between SKIT-CCA and SKIT execu-
tion times (before rounding) of the corresponding function relative to the SKIT execution time.
For four different sizes of the problem in Equation (1), component function calls are presented in
the descending order of their execution times. Variations in the relative order of the calls across
different problems may be attributed to the varying problem difficulty, which may result in a
denser preconditioner, and also to more memory allocations as the problem size increases. This
fine-grain performance analysis indicates that no particular function call incurs excessive overhead.
The majority of time is spent either in lusol or in create functions, which apply and construct
the preconditioner, respectively. Note that the problems with nnz = 38 880 and nnz = 45 847 repre-
sent domains with nx = ny = nz ≡ n p, with n p = 20 and 21, respectively. They also require more
iterations to converge than the other cases in Table IV do.

4.2.1. Fine-grain tuning of solution methods

ARMS [16] is a multi-level preconditioner framework designed to aid in solving difficult linear
systems. In a nutshell, the construction of the ARMS preconditioner consists of two steps. First,

Table IV. Performance analysis using TAU.

nnz Func Calls SKIT-CCA SKIT Norm (%)

lusol 46 20 16 25.0
38 880 create 1 18 16 12.5

apply 93 12 12 0.0

create 1 25 20 25.0
45 847 lusol 46 20 20 0.0

apply 93 13 12 8.3

lusol 36 35 34 2.4
76 760 create 1 34 34 0.0

apply 73 28 27 2.9

create 1 96 95 1.3
179 800 apply 73 96 90 7.3

lusol 36 91 81 13.1

Timings in columns SKIT and SKIT-CCA are in milliseconds, rounded up to
the nearest integer.
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reorder the matrix A into a 2× 2 block form:

A =
(
B F

E C

)
(2)

using the permutations of rows and columns defined according to some given criteria, such as
making the sub-matrix B block-diagonal. Second, use an ILU technique to obtain an approximate
factorization of B and approximations to the matrices L−1F , EU−1, and A1:(

B F

E C

)
≈
(

L 0

EU−1 I

)
×
(
U L−1F

0 A1

)
(3)

The process is repeated recursively on the matrix A1, which may now be renamed A, until the
selected number of levels is reached. At the last level, a simple (single-level) preconditioner is used
on the entire (reduced) system. More detailed information about the ARMS preconditioner and its
level structure may be found in [16,20].
The ARMS component allows application scientists to easily choose among available last-level

system preconditioners and even add their own preconditioners. For testing, we have made a
novel version of ILU preconditioner (ILUC [18]) available to the ARMS component as the
last-level preconditioner. ILUC is a fast preconditioner and also has the ability to incorporate
sophisticated drop tolerances, thus our desire to make it available for the connection to the ARMS
component. Figure 4 (right) sketches the ARMS component and the switching between two
different last-level preconditioner components, ILUC and ILUT. The last-level preconditioner
choice is typically made at the stage of component assembly, e.g. in a configuration file. Different
last-level preconditioners may require different arguments or use different data structures; hence,
a method that allows a flexible way to set these arguments is needed. To solve this problem,
the GenericPreconditioner interface was developed [14]. The method getName is
also a part of the interface and is used by ARMS (or any other calling component) to deter-
mine which component implementation is connected. Using getName, ARMS can determine
which arguments to set and in what format the arguments are expected to be for its last-level
component.
To test the usability of the ARMS component and to observe the benefits of switching last-

level preconditioners, we have used two linear systems arising in circuit simulation and device
modeling. These fields are known to produce linear systems difficult to solve by iterative methods
since the corresponding matrices are notorious for their irregular structure and poor conditioning.
In particular, the circuit simulation matrix scircuit from the University of Florida collection
[21] has 84 zeros on its diagonal, while its total dimension is 170 998 and the number of non-zero
entries is 958 936. Figure 5 presents the matrix structure and indicates its entry magnitudes: the
darker colors correspond to larger magnitudes. The second matrix igbt3 has the dimension of
10 938 with 234 006 non-zeros, and no zero diagonal elements. This matrix is ill-conditioned: In
[22], its condition number has been estimated to be 4.74× 1019.
Table V shows a comparison of using ARMS component and two available last-level precondi-

tioners ILUC and ILUT (column Precon), as well as using only single-level ILUT and ILUC. (In
this test, all the preconditioner components are connected via the GenericPreconditioner
interface, and the ARMS version with non-symmetric permutations [20] has been used.) Column nnz
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Figure 5. The structure and entry magnitudes for the scircuit matrix.

Table V. Comparison of a linear system solution process when GenericPreconditioner
is used with easy switching of preconditioner components.

matrix nnz Precon its time

scircuit

958 936 ARMS + ILUC 7 124.9
ARMS + ILUT 7 125.1

ILUC 55 11.2
ILUT * *

igbt3

234 006 ARMS + ILUC 8 20.23
ARMS + ILUT 6 19.5

ILUC * *
ILUT 19 0.55

refers to the number of non-zero entries in the matrix. Columns its and time refer to the number
of iterations and time (in seconds) needed for preconditioner construction and iterative convergence,
respectively. An asterisk denotes an inability to converge when the stopping tolerance of 10−6 is
used. The results for scircuit show that ARMS with ILUC performs slightly better than ARMS
with ILUT and that the ILUC preconditioner has the best time, but takes many more iterations to
converge than the ARMS preconditioner. Note that execution times with ARMS preconditioner are
higher than those with single-level preconditioners in Table V because the ARMS preconditioner
took longer to construct. The ILUT preconditioner implementation used for testing returns an error
since it does not accept zeros on the diagonal. For the igbt3, the ILUC preconditioner is not able
to converge, contrary to the solution with ILUT that takes 19 iterations and is fast (0.55 s). Although
ARMS with ILUC converges in a small number of iterations, ARMS with ILUT performs better in
terms of both iteration count and the total execution time.
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Table VI. Comparison of SPARSKIT using low-level
componentizing of BLASSM library.

nnz BLASSM BLASSM-CCA diff (%)

76 760 0.0028 0.0036 28.57
122 880 0.00472 0.0062 31.35
179 800 0.00728 0.0088 20.88
247 520 0.00984 0.00122 23.98
326 040 0.01296 0.0152 17.28
415 360 0.01668 0.02 19.9
515 480 0.021 0.0254 17.59

4.3. LI components

Table VI shows a comparison of the original SPARSKIT (column BLASSM) and a component
implementation (column BLASSM-CCA) for low-level component design, while the other column
designations are the same as in Table III. The test results for BLASSM-CCA were obtained by
calling the matrix–matrix multiply function amub with the matrices in the CSR format as input
arguments and by taking the average over 10 calls, with standard deviations ranging from 5×10−5

to 7.26× 10−4. We observe that the incurred overhead varies from 17.28 to 31.35%. Only a small
part of the overhead is incurred from the componentization, while most of the overhead comes from
the function overloading within the BLASSM component.

5. RELATED WORK

The Matrix Template Library (MTL) [23] is a high-performance generic component library that
provides comprehensive linear algebra functionality for a wide variety of matrix formats. The
MTL uses a five-fold approach, consisting of generic functions, containers, iterators, adaptors, and
function objects developed for high-performance numerical linear algebra. The containers, iterators,
and adaptors are used to represent and manipulate linear algebra objects such as matrices. Using
an optimizing compiler, the MTL has been able to produce performance equal to and sometimes
better than vendor-tuned math libraries such as the Sun Performance Library.
Many packages exist that use a ‘high-level’-like design. One such project is the toward optimal

petascale simulations (TOPS) solver interfaces [24]. TOPS is an integrated software infrastructure
focused on developing, implementing, and supporting optimal or near-optimal schemes for PDE-
based simulations and closely related tasks, including optimization of PDE-constrained systems,
sensitivity analysis, eigenanalysis, adaptive time integration, and core implicit linear and nonlinear
solvers. A common interface for the TOPS software infrastructure has been developed and is being
integrated into CCA. The idea for the next generation of PETSc solvers is to use and extend the
TOPS SIDL interfaces.
The Scalable Linear Solvers project at the Lawrence Livermore National Laboratory developed

hypre [12], a library of high-performance preconditioners that features parallel multi-grid methods
for both structured and unstructured grid problems. While not currently being implemented using
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the CCA, hypre has developed some sample SIDL interfaces and currently has a development
version that uses Babel.

6. CONCLUSIONS

In this paper, we have examined in detail three different design choices when creating sparse linear
system solver components and discussed their usability issues. Depending on their component
granularity, we have distinguished three interface levels, high (HI), medium (MI), and low (LI),
which also correspond to three distinct usability requirements. HI enables an easy selection among
the multiple solver packages with the ‘black box’ style of usage. MI gives more control to an
application scientist to work directly on the preconditioner and accelerator tuning. LI provides easy
access to a wide array of matrix handling routines without the tedious matrix format conversions.
It has been observed that, among the three user interface levels, HI incurs the smallest overhead,

which is not higher than 1.72% in the experiments considered in this paper. The MI level overhead
appears to stay below 3.5%, but may vary with problem size due to a varying number of component
calls for each problem size. The usability of MI has been demonstrated by connecting ‘on-the-fly’
the multi-level ARMS preconditioner with different single-level preconditioners. We have shown
how this coupling enables efficient solution of difficult linear systems with novel preconditioning
techniques. The LI overhead appears high mainly because of the function overloading and, thus,
LI may be beneficial only for large-scale data.
The HI, MI, and LI levels may be also viewed as hierarchical interfaces in the sense that they may

be combined into a single set of interfaces so that MI components are connected to HI ones, and
LI components may be used on both HI and MI levels. For example, high-level interfaces may be
supplied to the driver component currently governing (via MI) the selection of preconditioners and
accelerators in SPARSKIT. In this way, the entire linear system solver assembled from SPARSKIT
components may be accessed via HI. A detailed design of the hierarchical interfaces, however, is
left as a future work.
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22. Schenk O, Röllin S, Gupta A. The effects of unsymmetric matrix permutations and scalings in semiconductor device

and circuit simulation. IEEE Transactions on CAD of Integrated Circuits and Systems 2004; 23(3):400–411.
23. Siek JG, Lumsdaine A. The matrix template library: A generic programming approach to high performance numerical

linear algebra. ISCOPE ’98: Proceedings of the Second International Symposium on Computing in Object-Oriented
Parallel Environments, 1998. Springer: London, U.K., 1998; 59–70. ISBN: 3-540-65387-2.

24. TOPS SciDAC center. http://www.scidac.gov/math/TOPS.html [August 2007].

Published in 2007 by John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2007)
DOI: 10.1002/cpe


